

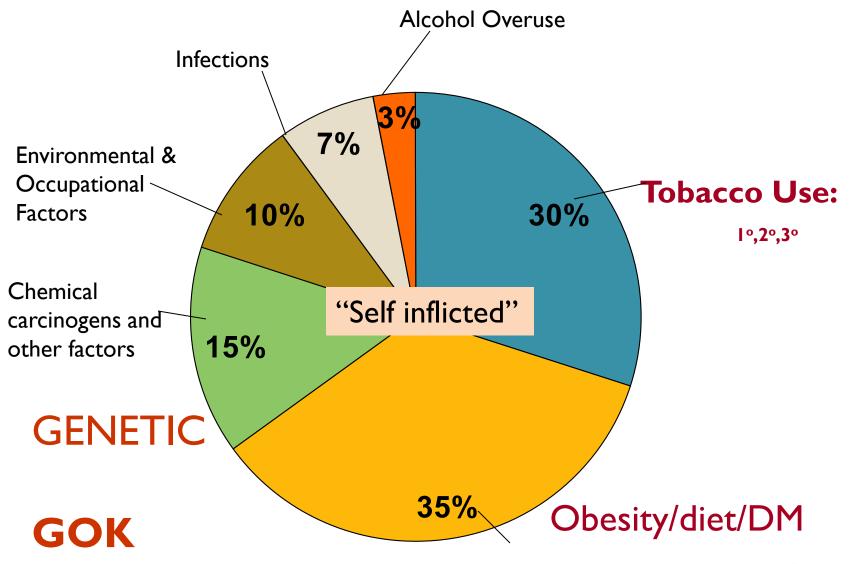
What are Natural Cancer Vaccines - and have we missed 'em?

Professor Dr Nor Hayati Othman, School of Medical Sciences, Universiti Sains Malaysia <u>hayatikb@usm.my</u>

World Cancer Burden 2018

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2018 Graph production: IARC (http://gco.iarc.fr/today) World Health Organization World Health Organization © International Agency for Research on Cancer 2018



Source Globocan

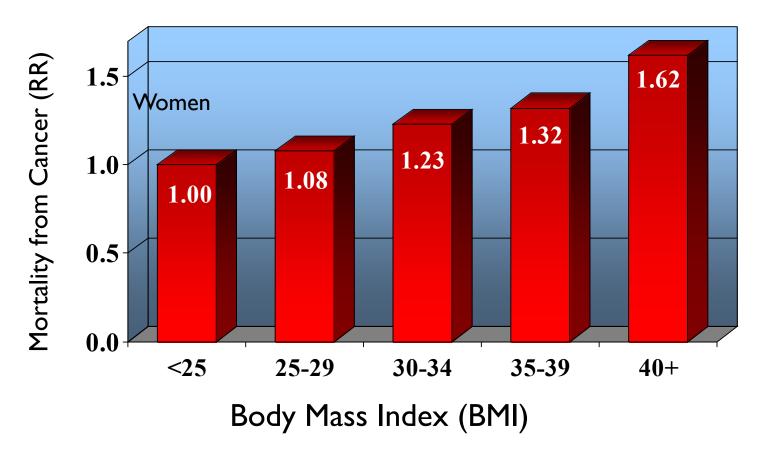
How and why people get cancer?

Risk Factors For Cancer Development

Diabetes and cancer

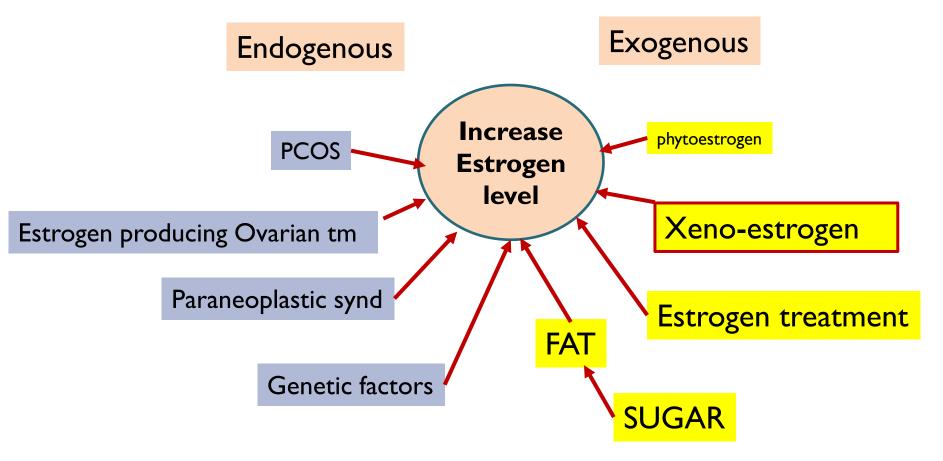
Cancer		RR (95% CI)
Liver (El-Serag <i>et al.</i> 2006)	13 case-control studies	2.50 (1.8-3.5)
	7 cohort studies	2.51 (1.9-3.2)
Pancreas (Huxley <i>et al.</i> 2005)	17 case-control studies	1.94 (1.53-2.46)
	19 cohort studies	1.73 (1.59-1.88)
Kidney ^a (Lindblad <i>et al.</i> 1999, Washio <i>et al.</i> 2007)	1 cohort study	1.50 (1.30-1.70)
	1 cohort study	2.22 (1.04-4.70)
Endometrium (Friberg et al. 2007)	13 case-control studies	2.22 (1.80-2.74)
	3 cohort studies	1.62 (1.21-2.16)
Colon-rectum (Larsson et al. 2005)	6 case-control studies	1.36 (1.23-1.50)
	9 cohort studies	1.29 (1.16-1.43)
Bladder (Larsson <i>et al.</i> 2006)	7 case-control studies	1.37 (1.04-1.80)
	3 cohort studies	1.43 (1.18-1.74)
Non-Hodgkin's lymphoma (Mitri et al. 2008)	5 cohort studies	1.41 (1.07-1.88)
	11 case-control studies	1.12 (0.95-1.31)
Breast (Larsson <i>et al.</i> 2007)	5 case-control studies	1.18 (1.05-1.32)
	15 cohort studies	1.20 (1.11-1.30)
Prostate (Kasper & Giovannucci 2006)	9 case-control studies	0.89 (0.72-1.11)
	10 cohort studies	0.81 (0.71-0.92)

^aData on kidney cancer were not obtained from meta-analysis.


Vigneri et al; Endocrine-Related Cancer (2009) 16, 1103–1123

Obesity and Cancer Risk

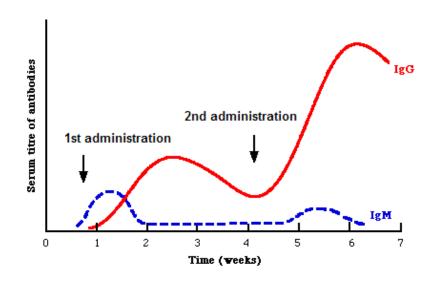
F


n=495,477 16 yr study

Estrogen related ca: Breasts, Endometrium, Ovaries, Colorectum, Meningioma etc...

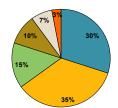
Are there natural cancer vaccine?

What is a Vaccine?


- A <u>product</u> which produces <u>immunity</u> therefore protecting the body from the <u>disease</u>
- A vaccine can be preventive, therapeutic, or both
- Synthetic vaccines
- Natural vaccines

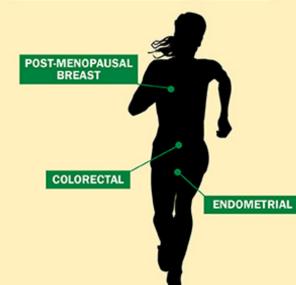
Boosters

 For most vaccines, the immunity against a particular pathogen has a tendency to wear off over time.


 In this case, a periodic "booster" administration must be given in order to strengthen and lengthen the duration of immunity.

Vaccine I: Reduce Risk Factor

- Prevention is better than cure
- Almost impossible
 - Kick out smokers from your vicinity
 - Check-in in non-smoking rooms
 - Read mantra "White sugar is poison!"
 - Mind over matter



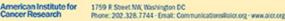
Vaccine 2: Exercise; 30/7/7

• Very potent vaccine

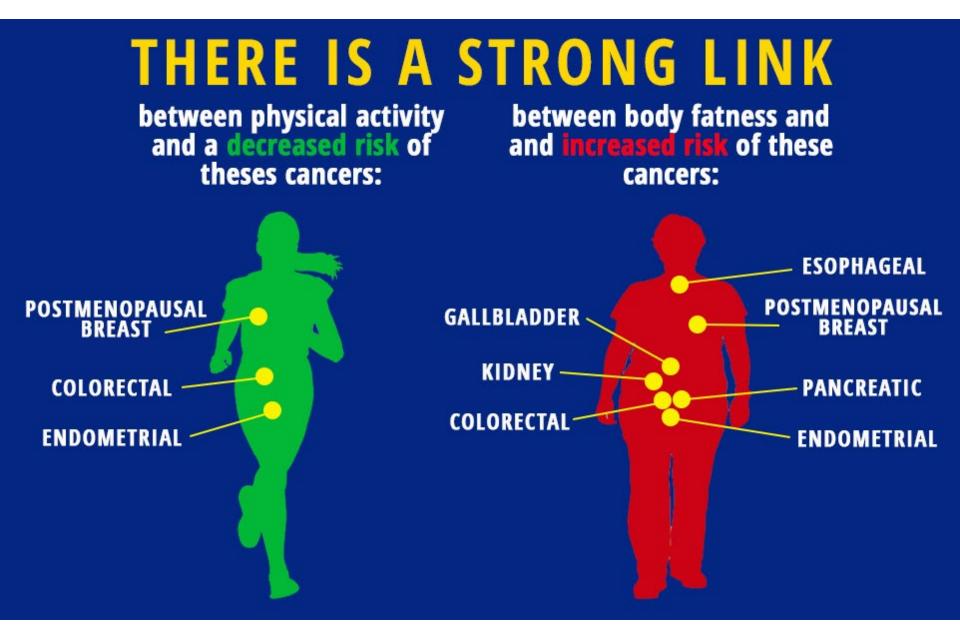
BEING PHYSICALLY ACTIVE DECREASES RISK OF THESE CANCERS:

Activity helps to:

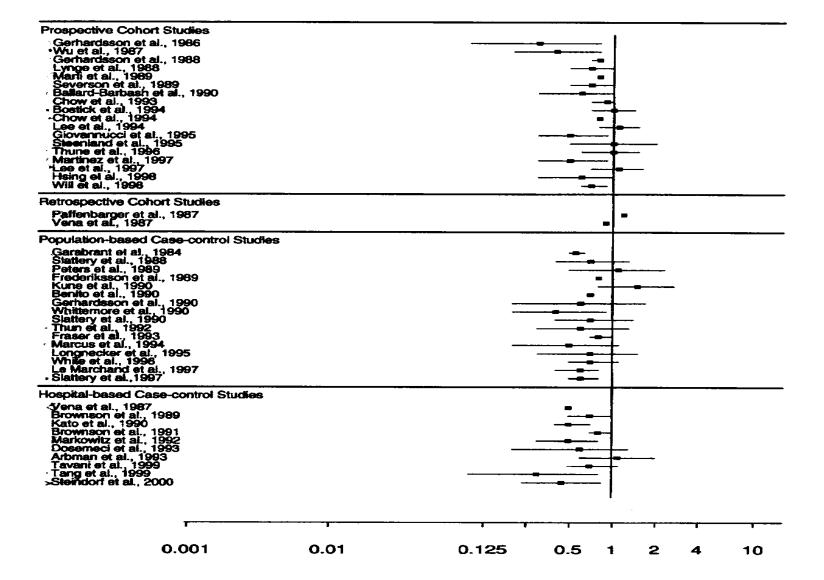
- Regulate blood levels of hormones that contribute to cancer risk
- Speed food through the colon, reducing exposure to dietary carcinogens
- Prevent the build up of body fat, a cause of many cancers


AIM FOR 30 MINUTES A DAY, IN ANY WAY

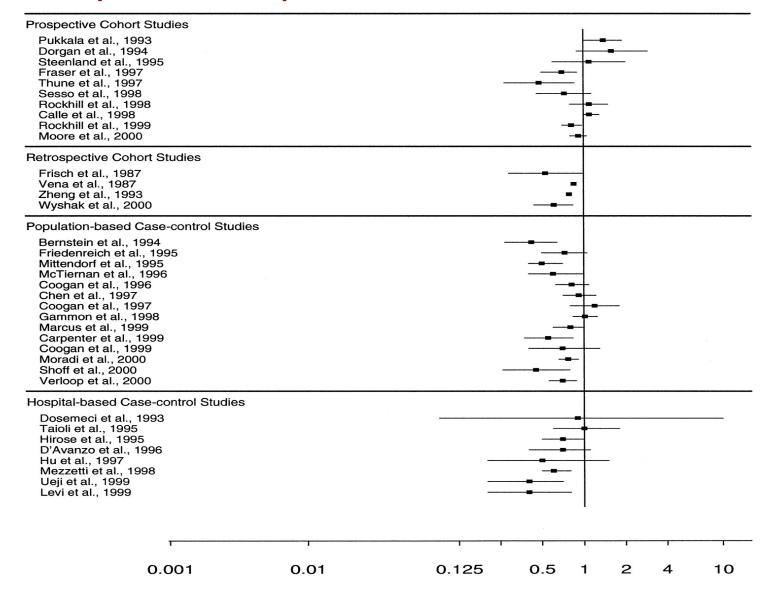
The evidence is the latest from the Continuous Update Project (CUP), which systematically updates and reviews the research conducted worldwide into cancer risk related to diet, physical activity and body weight. All the evidence gathered is then assessed by a panel of independent scientists who make recommendations for cancer prevention.



prevent50.org



Fitness Vs Fatness


Evidence that exercise 'protects' against cancer development

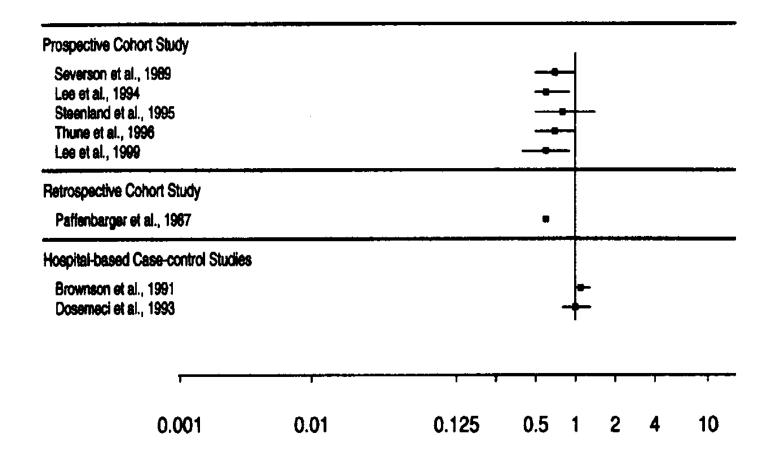
Physical Activity and Colorectal Cancer Risk

Physical Activity and Breast Cancer Risk

Physical Activity and Prostate Cancer Risk

Ē

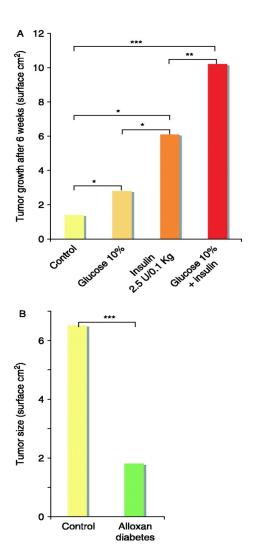
Prospective Cohort Studies				
Severson et al., 1989			-+-	
Thune et al., 1994				
Lee et al., 1994 Steenland et al., 1995				
Oliveria et al., 1996				
Cerhan et al., 1997				
Hartman et al., 1998				
Giovannucci et al., 1998 Liu et al., 2000				
Lund Nilsen et al., 2000				
Clarke et al., 2000				
Retrospective Cohort Studies				
Paffenbarger et al., 1987			•	
Vena et al., 1987			=	
Hsing et al., 1994				
Population-based Case-control Studie	es			
LeMarchand et al., 1991				-
West et al., 1991			-+	
Andersson et al., 1995 Whittemore et al., 1995				
Villeneuve et al., 1999				
Putnam et al., 2000				
Hospital-based Case-control Studies		•••		
Yuetal., 1988				
Brownson et al., 1991				
Dosemeci et al., 1993				
Sung et al., 1999 Bairati et al., 2000			-	
Denar et al., 2000		-	l l	
F		······		· · · · · · · · · · · · · · · · · · ·
0.001	0.01	0.125	0.5 1	2 4 10
0.00.		J	·	


Freidenreich, Cancer Epid Biomark Prev, 10:287-301, 2001

Physical Activity and Endometrial Cancer Risk

Prospective Cohort Study Pukkala et al., 1993						
Retrospective Cohort Studies				-		
Zheng et al., 1993 Moradi et al., 1998 Terry et al., 1999						
Population-based Case-control Studies						
Sturgeon et al., 1993 Goodman et al., 1997 Shu et al., 1993			•			
Olson et al., 1997 Moradi et al., 2000			-	-		
Hospital-based Case-control Studies						
Levi et al., 1993 Hirose et al., 1996						
Γ s	т		1			
0.001 0	.01	0.125 0.5	5 1	2	4	10

Physical Activity and Lung Cancer Risk

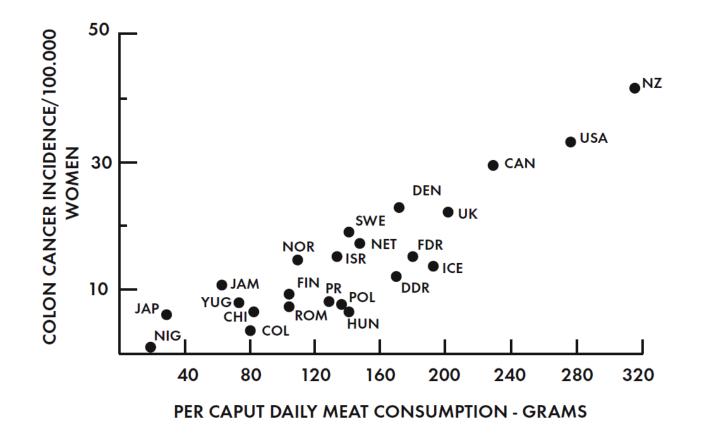

Freidenreich, Cancer Epid Biomark Prev, 10:287-301, 2001

VACCINE 3: WATCH WHAT YOU EAT

Mammary tumor growth in four matched groups of rats, given either normal diet or with the addition of oral glucose or of insulin injections or both (significant differences: *P<0.05; **P<0.01; ***P<0.0005; Heuson et al. 1972).

Mammary tumor regression after induction of alloxan diabetes in two groups of matched rats. Observation period=6 weeks; P<0.001 Heuson et al. 1972

Endocr Relat Cancer. 2009 Dec;16(4):1103-1123


Bad vs good (cancer) diet type

- High sugar diet
- High fat, cholesterol, saturated fat
- High calorie
- Alcohol
- Preserved foods (pickles)
- Processed foods
- Iron overload [too much red meat]
- Vitamins and minerals deficiency

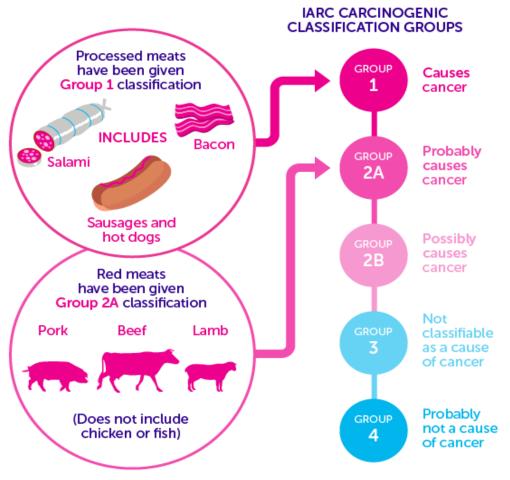
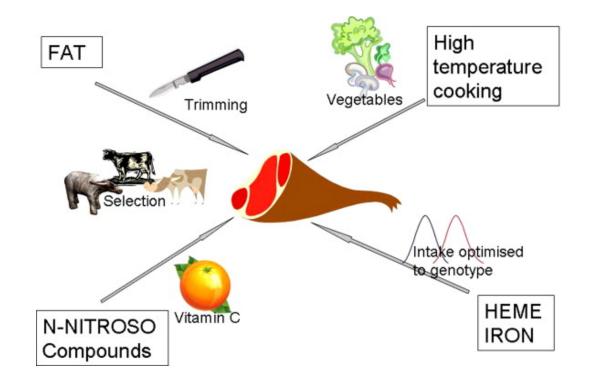

- Low sugar diet
- Low calorie
- Less fat
- □ Fresh
- Macronutrients
 - **G** Fiber
 - omega-3 fatty acid
- Micronutrients
 - vitamins: A, D, E,C, B6, folic acid
 - minerals: Ca, Se, Zn, Mg

Fig. 2.9.1 Correlation between incidence of colon cancer in women and mean individual daily meat consumption in 23 countries [6]

MEAT AND CANCER HOW STRONG IS THE EVIDENCE?


These categories represent how likely something is to cause cancer in humans, not how many cancers it causes.

WE WILL BEAT CANCER SOONER cruk.org

Possible approaches to reduce cancer risk:

- •Trimming fat off meat.
- Eat meat with high intake of veges, fruits and cereals
- The efficacy of formation of free radicals is reduced by high levels of vitamins C or E.
 Reduce high overall dietary iron intake

Fibre and Cancer

- Decrease intestinal transit time
- Decrease time for contact of carcinogens with the colonic tissue
- Dilute carcinogens and bile acids (Promoter of carcinogen) in the gut
- Change the bacterial flora and fermentation capability
- Too much fiber may itself injury the mucosa of the colon and enhance carcinogenesis

Vaccine 4: Natural Honey

Causes of cancer

Accumulation of toxic free radicals reactive oxygen species due to; •Smoking; Alcohol; Obesity; diabetes, environmental factors etc..

Chronic infections; for e.g. bacteria (H.pylori), virus (HPV, EBV, Hep B, C), parasites (shistosomiasis), fungus (Aspergilus flavus)

Low immune status e.g due to diabetes, chronic illness, obesity

Chronic inflammation e.g colorectal carcinoma in Crohns disease and ulcerative collitis

Chronic non-healing ulcers e.g squamous cell carcinoma developing in chronic traumatic wounds

Genetic Inheritance

GOK

Compositions of honey

NUTRIENT:

Water

sugars

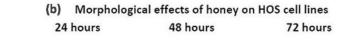
....FructoseGlucoseMaltoseSucrose Proteins, amino acids, vitamins and minerals

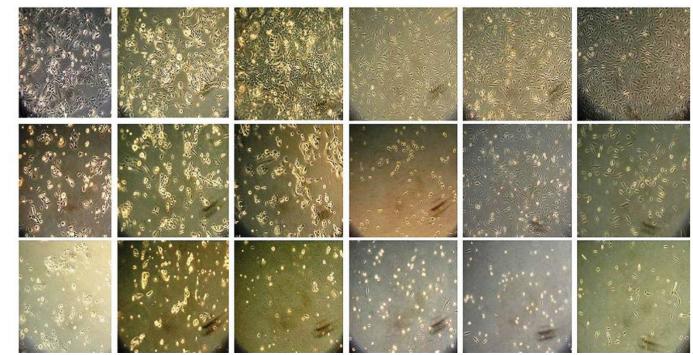
VitaminsThiaminRiboflavinNiacinPantothenic acidPyridoxine (B⁶)Ascorbic Acid (C)

MineralsCalciumCopperIronMagnesiumManganesePhoshorusPotassiumSodiumZinc

high antioxidant activity Phenolic flavonols, flavavones, flavones, anthocyanidins isoflavones -flavonoids •Pinocembrin Pinobanksin •chrysin, •galangin, •luteolin, •quercetin •Kaempferol •Apigenin

Why is honey good in preventing cancer?

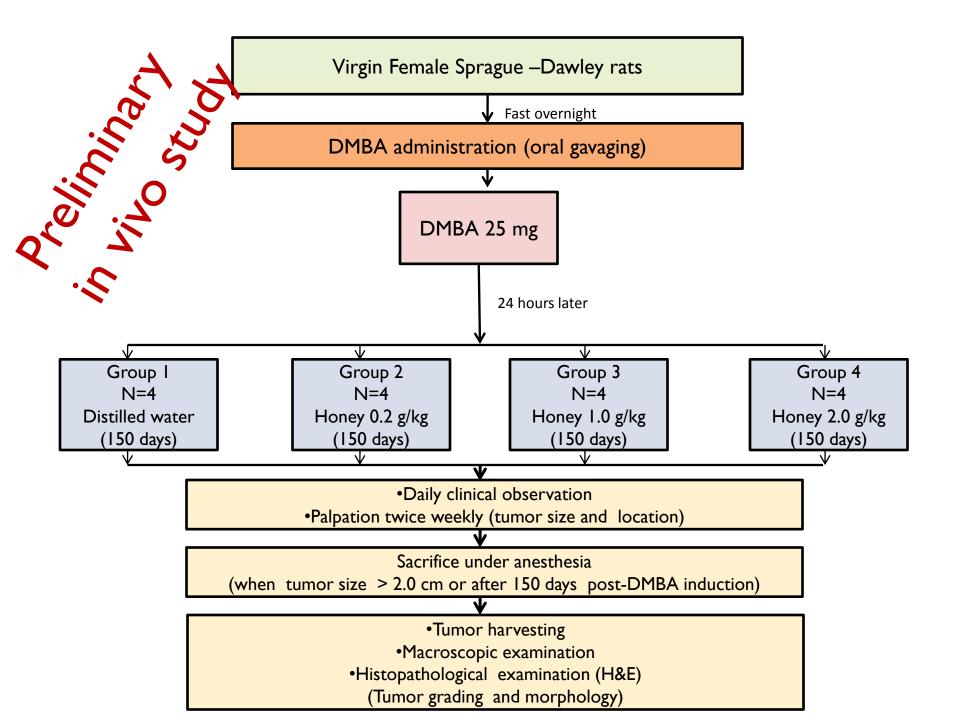

Scientific evidence is growing:-

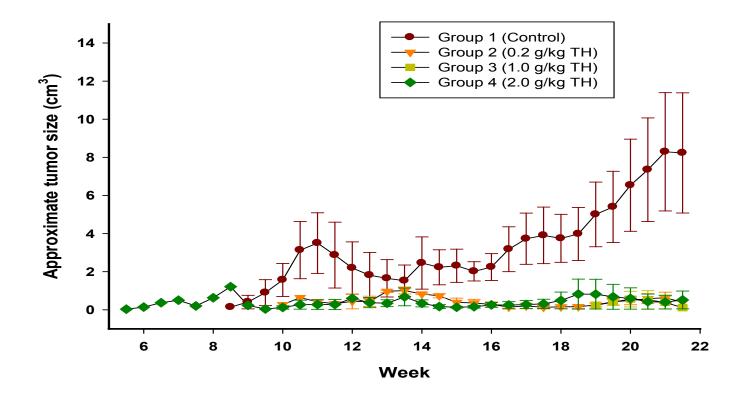

- I. Honey is a natural immune booster
- 2. Honey is natural anti-inflammatory agent
- 3. Honey is natural antimicrobials
- 4. Honey- is a 'fixer' for chronic ulcers and wounds
- 5. Honey is possible agent for controlling obesity
- 6. Honey is a possible natural cancer 'vaccine'
- 7. Honey has potential as cancer therapeutic agent

Oral Sq cell carcinoma (OSCC)

Human Osteosarcoma (HOS)

(a) Morphological effects of honey on OSCC cell lines24 hours48 hours72 hours

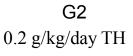



Tualang honey induced apoptotic cell death in OSCC and HOS cell lines.

Effect of Tualang honey on morphology of (a) OSCC and (b) HOS cell lines as seen under light microscope. Cells were cultured in 6-well plates until 70-80% confluence and then treated with Tualang honey 2% and 10% for 24, 48 and 72 hrs

BMC Complementary and Alternative Medicine 2010, 10:49,pp2-8._doi:10.1186/1472-6882-10-4.

Tumor progression

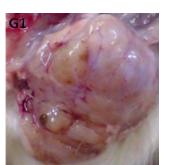


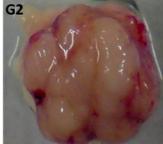
- Non-Honey : Rapid tumor size increment over shorter period of time
- Honey : Slower tumor size increment & lesser mean tumor size

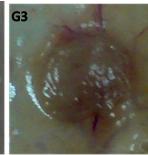
Study groups

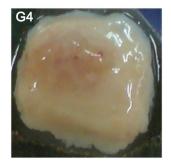
The vasculature around the cancer masses. Arrows showing the arteries supplying the cancer mass G1 Control

G1

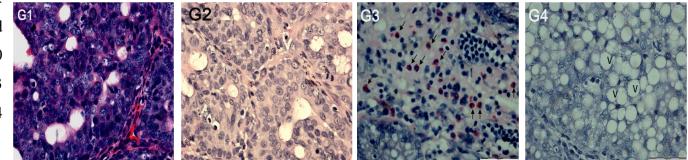

G3

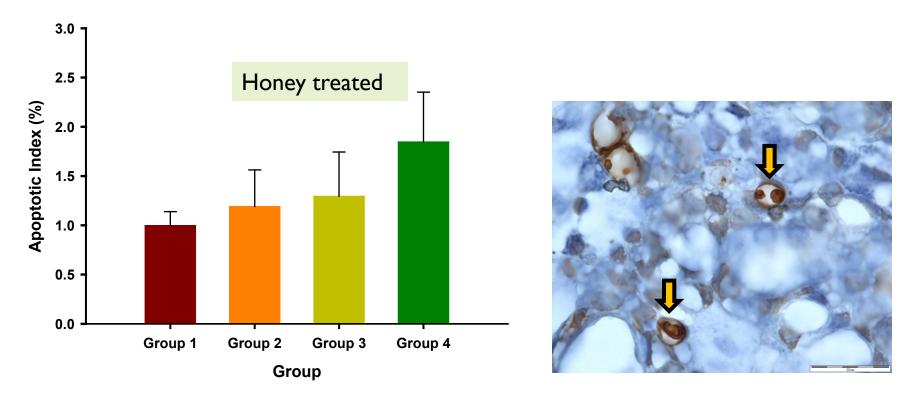

1.0 g/kg/day TH


G4 2.0 g/kg/day TH



The gross appearance of the cancer after 150 days post-DMBA induction.



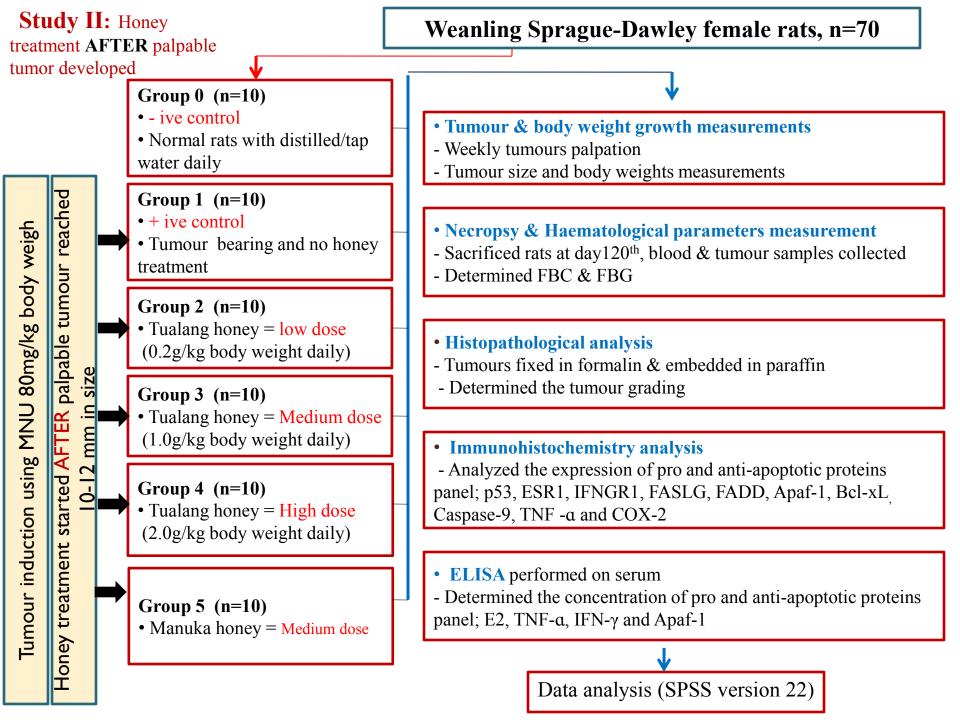


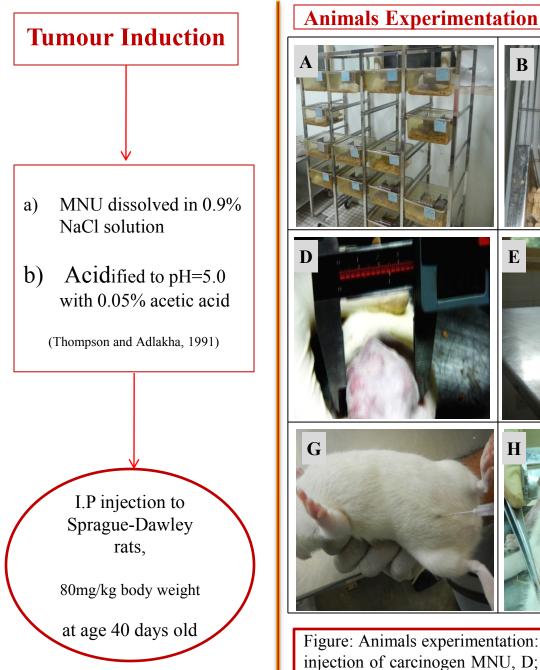
The histology of the breast cancer. The H/E stained sections examined under light microscope at X400 magnification [Arrows in G3 showing eosinophils; 'V' in G4 showing vacuoles in cancer cells

- Bar graph: Percentage of apoptotic cells per total number of cells counted (AI).
- Photomicrograph: Brown-colored apoptotic cells from TUNEL assay (1000x).
- Increasing trend of AI with increasing dose of honey treatment.
- Differences between groups statistically not significant.

BMC Complementary and Alternative Medicine 2010, 10:49,pp2-8._doi:10.1186/1472-6882-10-4.

Study 1: Honey treatment BEFORE cancer Induction


Honey treatment started I week prior tumour induction


Weanling Sprague-Dawley female rats, n=60 Group 0 (n=10) • - ive control • Tumour and body weight growth measurements • Normal rats with distilled/tap - Weekly tumours palpation - Tumour size and body weights measurements water daily Group 1 (n=10) Tumour induction using MNU 80mg/kg body weigh • + ive control • Necrospy & Haematological parameters measurement • Tumour induction but no - Sacrificed rats at day120th, blood & tumour samples collected honey treatment - Determined FBC & FBG Group 2 (n=10) Histopathological analysis • Tualang honey = low dose - Tumours fixed in formalin & embedded in paraffin (0.2g/kg body weight daily) - Determined the tumour grading Group 3 (n=10)• Tualang honey = Medium dose Immunohistochemistry analysis - Analyzed the expression of pro and anti-apoptotic proteins (1.0g/kg body weight daily) panel; p53, ESR1, IFNGR1, FASLG, FADD, Apaf-1, Bcl-xL Caspase-9 TNF -a and COX-2 Group 4 (n=10) • Tualang honey = High dose (2.0g/kg body weight daily) **ELISA** performed on serum - Determined the concentration of pro and anti-apoptotic proteins

Group 5 (n=10) • Manuka honey = Medium dose (1.0g/kg body weight daily)

Data analysis (SPSS version 22)

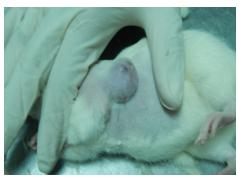
panel; E2, TNF-a, IFN-y and Apaf-1

С E Η

Figure: Animals experimentation: A & B; The rats maintenance C; intraperitoneal (i.p) injection of carcinogen MNU, D; tumour measurements, E, F & G; Sedation , H & I; Necropsy for samples collection.

RESULTS

Cancer- preventive Study


(Honey treatment started a week before MNUinduction)

Cancer- therapeutic Study

(Honey treatment started after breast cancer is palpable)

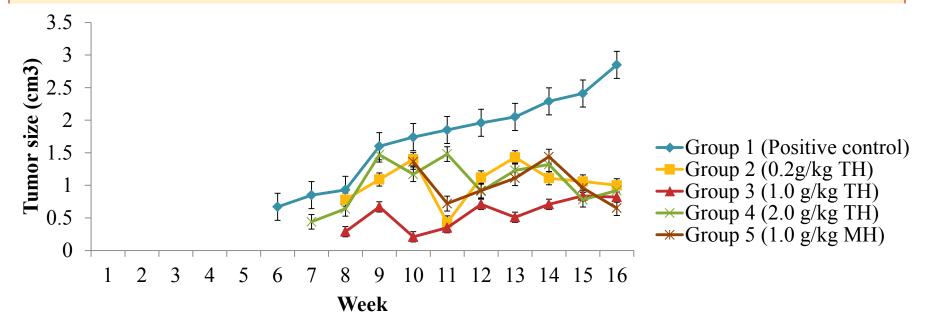
The Physical Characteristics of Tumour Growth [Preventive study (honey treatment 7/7 **BEFORE** cancer induction)

Tumours	0 - ive control	1 +ive control	2 (0.2g/kg TH)	3 (1.0g/kg TH)	4 (2.0g/kg TH)	5 (1.0g/kg MH)	P value
* Incidence (%)	No tumour	100	80	80	70	60	0.406
** Latency (days)	No tumour	51.5 (14.75)	75.5 (29.75)	76.5 (19.25)	74 (23)	74.5 (14.5)	0.015
** Multiplicity	No tumour	4 (2.25)	2.5 (2.75)	3 (2.5)	2 (2)	2 (3)	0.190
** Size (cm ³)	No tumour	1.47 (2.78)	0.26 (0.86)	0.38 (1.48)	0.60 (1.297)	0.23 (0.56)	0.000
** Weight (g)	No tumour	3.23 (7.23)	1.23 (5.23)	1.17 (2.50)	1.27 (2.97)	0.92 (2.67)	0.005

*Fisher Exact test. Values are statistically significant when $p \leq 0.05$.

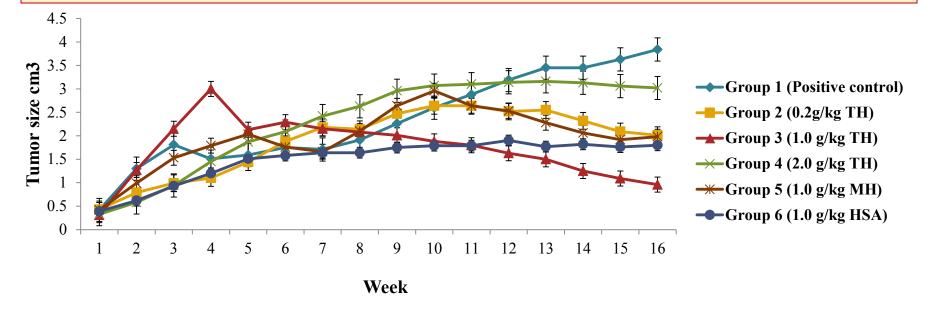
**Kruskal-Wallis test. Data are expressed as median interquartile range (IqR). Values are statistically significant when $p \le 0.05$.

*TH and MH potentiate the latency and lower the tumour incidence, multiplicity, size and weight


The Physical Characteristics of Tumour Growth [Therapeutic study (honey treatment AFTER cancer is palpable)

Groups										
Tumours	1 +ive control	2 (0.2g/kg TH)	3 (1.0g/kg TH)	4 (2.0g/kgTH)	5 (1.0g/kg MH)	6 (1.0g/kg HSA)	P value ^a			
Multiplicity	5 (4)	3.5 (2.25)	3 (5.25)	3.5 (1.5)	3 (3.5)	3 (3.5)	0.462			
*% Reduction	0 (0)	54.8(43)	70.82(22.94)	33.97(60.4)	57 (32.94)	58.53(37.97)	0.000			
*Size (cm ³)	1.23 (2.49)	0.19 (1.6)	0.17 (0.29)	0.50 (1.94)	0.44 (1.11)	0.23 (0.54)	0.000			
*Weight (g)	2.55 (7.76)	0.68 (5.37)	0.89 (2.62)	1.65 (5.85)	1.8 (3.70)	1.25 (2.53)	0.011			

• TH, MH and HSA showed a potentiating effect on % reduction


• TH, MH and HSA had a lowering effect on Tumour Multiplicity, Size and Weigh

Breast Cancer Progression (honey treatment 7/7 BEFORE cancer induction)

- All strengths of TH and MH appeared to slow down the progression of breast tumour development during the experimental period.
- In contrast, the non-treated control rats exhibited increased tumour progression with faster tumour size increment.

Breast Cancer Progression (honey treatment started AFTER cancer is palpable)

- All strengths of TH, MH and HSA appeared to slow down the progression of breast tumour development during the experimental period.
- In contrast, the non-treated control rats exhibited increased tumour progression with faster tumour size increment.

Gross Morphology & Histopathology of Breast Cancer (honey treatment 7/7 BEFORE cancer induction)

St. 1	Group 1	Group 2	Group 3	Group 4	Group 5
Study groups	+ive control (no treatment)	0.2 g/kg TH	1.0 g/kg TH	2.0 g/kg TH	1.0 g/kg MH
The gross appearance of tumours	A	B	C	D	E
The H & E histology at X400 (Arrow shows mitosis)	A	B		D	

The tumour masses in the non-treated control larger in size, solid, hard in consistency and of higher grade compared to treated groups with softer, paler, smaller in size and of lower grade.

Gross Morphology & Histopathology of Breast Cancer (honey treatment started AFTER cancer is palpable)

Study groups	Group 1 +ive control (no treatment)	Group 2 0.2 g/kg TH	Group 3 1.0 g/kg TH	Group 4 2.0 g/kg TH	Group 5 1.0 g/kg MH	Group 6 1.0 g/kg HSA
The gross appearance	A	B	C	D	E	F
Figure 4.b The H & E histology at X400 (arrow shows mitosis)						F

The tumour masses in the non-treated control larger in size, solid, hard in consistency and of higher grade compared to treated groups with softer, paler, smaller in size and of lower grade.

Histological Grading* of Breast Cancer (honey treatment 7/7 BEFORE cancer induction)

Groups										
Tumours	0 - ive control	1 +ive control	2 (0.2g/kg TH)	3 (1.0g/kg TH)	4 (2 Ag/kg TH)	5 (1.0g/kg MH)				
Total No.	No tumour	-ive control 39	(0.2g/kg TH) 18	(1.0g/kg TH)	(2.0g/kg TH) 17	(1.0g/kg MH) 				
[*] Grade I (%)	No tumour	7 (17.94)	11 (61.11)	9 (40.90)	9 (52.94)	8 (72.72)				
*Grade II (%)	No tumour	10 (25.64)	2 (11.11)	9 (40.90)	6 (35.29)	3 (27.27)				
*Grade III (%)	No tumour	22 (56.41)	5 (27.77)	4 (18.18)	2 (11.76)	0				

TH and MH exhibit tumours mainly of grade I and II (histologically less aggressive) compared to the non-treated control which had majority of grade III (histologically more aggressive).

* Bloom-Richardson Grading system

Histological Grading of Breast Cancer (honey treatment **AFTER** cancer is palpable)

Groups

Tumours	0	1	2	3	4	5	6
	- ive control	+ive control	(0.2g/kg TH)	(1.0g/kg TH)	(2.0g/kg TH)	(1.0g/kgMH)	(1.0g/kgHSA)
Total No.	No tumour	47	27	23	32	33	26
*Grade I (%)	No tumour	6 (12.76)	8 (29.62)	14 (60.86)	8 (25)	22 (66.66)	11 (42.3)
*Grade II (%)	No tumour	15 (31.91)	14 (51.85)	5 (21.73)	21 (65.62)	9 (27.27)	11 (42.3)
*Grade III(%)	No tumour	26 (55.31)	5 (18.51)	4 (17.39)	3 (9.37)	2 (6.06)	4 (15.38)

*TH, MH and HSA exhibit tumours mainly of grade I and II (histologically less aggressive) compared to the non-treated control which had majority of grade III (histologically more aggressive).

Hematological Parameters (honey treatment 7/7 BEFORE cancer induction)

		Groups									
Blood parameter	0 - ive control	1 +ive control	2 (0.2g/kg TH)	3 (1.0g/kg TH)	4 (2.0g/kg TH)	5 (1.0g/kg MH)	P value ^a				
RBC (10¹²/L)	7.15 (0.27)	6.35 (0.75)	7.35 (1.22)	7.4 (1.02)	6.85 (1.67)	7.15 (0.82)	0.088				
Hb (g/dl)	15.35 (0.62)	14.1 (1.62)	14.8 (1.92)	15 (1.97)	15.25 (2.77)	14.9 (1.37)	0.062				
*PCV (%)	48 (2.5)	42 (3.25)	48.5 (5)	48.5 (9)	47.5 (8.75)	48.5 (5)	0.047				
MCV (fl)	65.5 (1.5)	66 (4.75)	65.5 (6.75)	66 (1.75)	65.5 (3.75)	65.5 (5.25)	0.004				
MCH (pg)	21 (2)	21.5 (1.5)	20.5 (2.25)	21 (2.25)	21.5 (2)	21 (2)	0.958				
MCHC (g/L)	32.5 (1)	31.5 (1.75)	31 (1.5)	31 (2.5)	32 (3)	32.5 (1)	0				
*RDW (%)	11.85 (1.7)	13.85 (1.7)	12.25 (2.72)	12.6 (1.5)	12.9 (2.22)	12.65 (1.5)	0.01				
TWBC (10 ⁹ /L)	4.85 (1.75)	6.14 (8.72)	5.05 (2.4)	4.95 (6)	6.25 (5.7)	4.85 (2.67)	0.178				
*Polymorphs (%)	33 (9.5)	42 (19.75)	34 (16.5)	32 (12)	32.5 (13.5)	32.5 (6.5)	0.009				
*Lymphocytes(%)	66 (5.5)	54 (20.75)	65 (13.5)	64.5 (13.5)	66.5 (15)	67 (5.75)	0.01				
Monocytes (%)	1.5 (1.5)	1.5 (2.5)	1.25 (1)	1 (0)	1 (2)	1 (2.25)	0.649				
Eosinophils (%)	0 (1.25)	0 (1.25)	0	0 (2)	0.5 (1)	0(1)	0.534				
Basophils (%)	0		0	0	0	0	1				
*Platelets' (10 ⁹ /L)	809.5 (149)	627.5 (196.75)	734 (197)	758.5 (178)	710 (89.5)	681 (236)	0.042				
Glucose (mg/dl)	164 (61.75)	126.5 (59.75)	106.5 (92)	132 (72.5)	123 (59.5)	123.5 (72.5)	0.899				

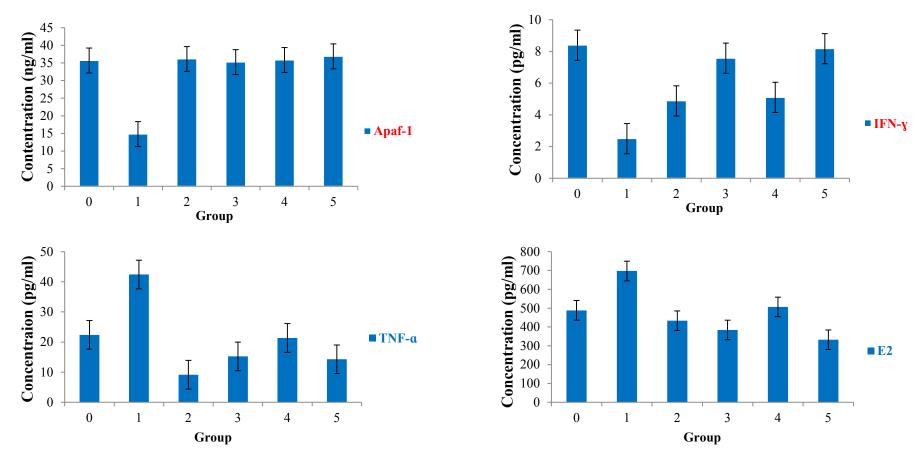
^aKruskal-Wallis test. Data are expressed as median interquartile range (IqR). Values are statistically significant at $p \le 0.05$.

1. Treatments with TH and MH had a slight potentiating effect on level of RBC, Hb, PCV, lymphocytes, platelets and eosinophils

2. A slight lowering effect on RDW, TWBC, polymorphs, monocytes and FBG compared to the non-treated positive control.

Hematological Parameters (honey treatment started AFTER cancer is palpable)

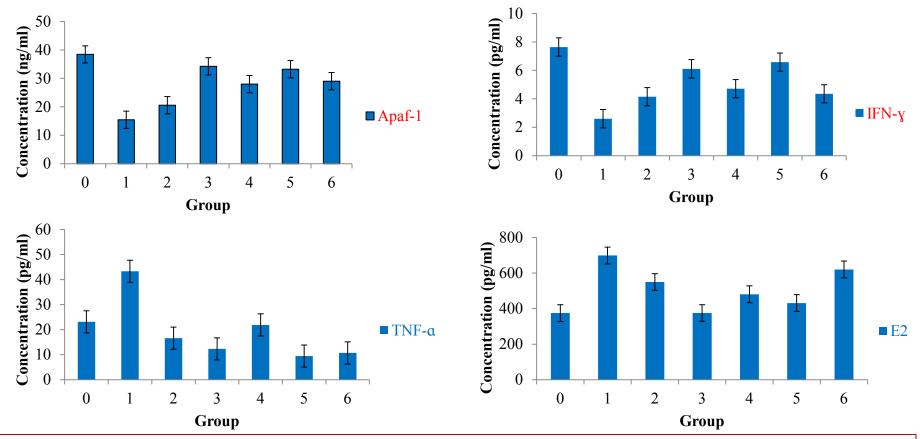
Groups


Blood parameter 0 1 2 3 4 5 6 (0.2g/kg TH) (1.0g/kg TH) (2.0g/kg TH) (1.0g/kg MH) (1.0g/kgHSA) - ive control +ive control *RBC $(10^{12}/L)$ 7.35 (0.42) 5.1 (0.9) 6.3 (2.27) 6.8 (3.32) 6.25 (1.62) 6.15 (2.75) 6.85 (1.1) *Hb (g/dl) 11.35 (1.42) 15.2 (0.77) 14.4 (4.17) 13.85 (5.95) 13.25 (2.9) 13.85 (4.45) 15.1 (1.45) *PCV (%) 46 (3.25) 35 (8.25) 39.5 (9.5) 42.5 (17.75) 43 (14.5) 43.5 (12.25) 45 (7.5) *MCV (fl) 68.5 (3.25) 65 (4.75) 66.5 (12.75) 65 (11.75) 65 (5.25) 67 (10.25) 65 (4.5) MCH (pg) 20.5 (1) 21 (2) 21.5 (1.75) 21 (3) 20.5 (1) 21 (3.5) 21 (1.5) MCHC (g/L) 32(1) 31.5 (2.25) 32 (5.25) 32 (3.5) 31.5 (3.25) 31.5 (2.25) 32 (5) *RDW (%) 11.9 (1.57) 13.95 (1.72) 14.4 (2.5) 12.25 (2.17) 14.1(1.82) 12.65 (2.1) 12.2 (1.8) *TWBC (10⁹/L) 4.75 (1.75) 6.4 (7.52) 12 (19.7) 4.82 (8.75) 10.3 (4.17) 7.35 (6.85) 5.6 (3.15) ***Polymorphs(%)** 32 (8.75) 46.5 (18) 32.5 (12) 31.5 (11.25) 31 (10.25) 31.5 (9.5) 32 (16) *Lymphocytes(%) 68 (8)¹ 49 (19.25) 68 (9.25) **69 (9.75)** 67 (9.25) 67.5 (4.5) **68 (14.5)** 2.5 (3.5) 0.5(1)Monocytes (%) 1 (1.25) 1 (3.25) 1 (4.25) 2 (1.5) 1 (2.5) 1 (1.25) **Eosinophils (%)** 0(1) 0 (1.25) 0.5 (11) 0.5(1) 1 (0.25) 1(1) **Basophils (%)** 0 0 0 0 0 0 0 Platelets (10⁹/L) 839 (225.75) 627.5 (196.75) 640 (389.75) 666.5 (229.25) 548.5 (337.5) 540.5 (324.75) 768 (255) 142 (71.5) Glucose (mg/dl) 164 (53) 127.5 (58.5) 138.05 (51) 153.5 (66.25) 154 (123.75) 138 (50.5)

 a Kruskal-Wallis test. Data are expressed as median interquartile range (IqR).* Values are statistically significant when p ≤ 0.05 .

Treatments with TH, MH and HSA had a slight potentiating effect on level of RBC, Hb, PCV, MCV lymphocytes, platelets, eosinophils and FBG (not exceeding than normal)

A slight lowering effect on RDW, TWBC, polymorphs and monocytes compared to non-treated positive control.


Serum Level Concentration of Pro and Anti-apoptotic Proteins (honey treatment 7/7 BEFORE cancer induction)

•TH and MH showed a potentiating effect on level of pro-apoptotic proteins; Apaf-1 and IFN-y

•A lowering effect on level of anti-apoptotic proteins; TNF-a and E2 compared to non-treated positive control

Serum Level Concentration of Pro and Anti-apoptotic Proteins (honey treatment started AFTER cancer is palpable)

- TH, MH and HSA showed a potentiating effect on level of pro-apoptotic proteins; Apaf-1 and IFN- $\!\gamma$

• A lowering effect on level of anti-apoptotic proteins; TNF-a and E2 compared to non-treated positive control

Immunohistochmical Expression (%) of Pro and Anti-apoptotic Proteins at Cancer Tissues level (honey treatment 7/7 BEFORE cancer induction)

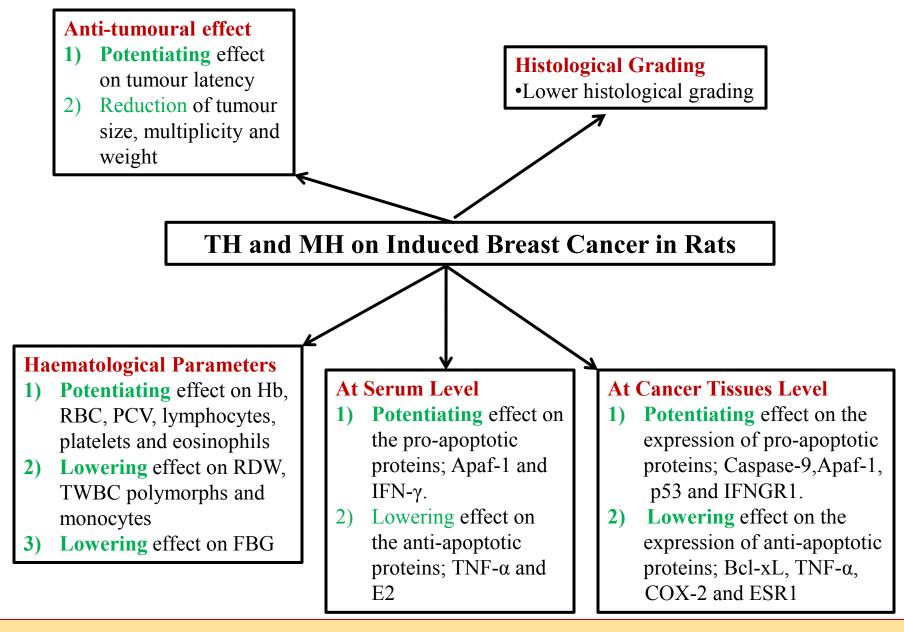
Tumours

No. of positive tumours (% expression or positivity)

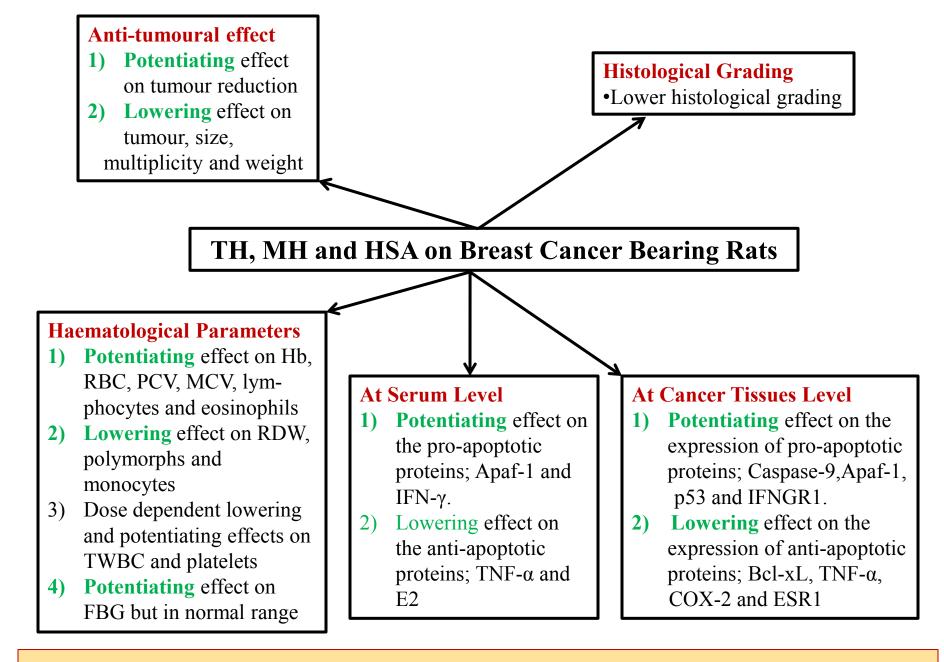
Group	No of tm	Caspase-9	Apaf-1	P53	IFNGR1	FASLG	FADD	Bcl-xL	TNF-a	COX-2	ESR1
1 +ive control	35	16 (45.7)	15(42.9)	17(48.6)	20(57.1)	13(37.1)	12(34.3)	28 (80)	31(88.6)	23(65.7)	26 (74.3)
2 (0.2g/kg TH)	16	13 (81.3)	15 (93.8)	13 (85)	15(93.8)	-ive	-ive	9 (56.3)	13 (85)	7 (43.8)	8 (50)
3 (1.0g/kg TH)	20	14 (70)	16 (80)	13 (65)	15 (75)	-ive	-ive	10 (50)	11 (55)	9 (45)	11 (55)
4 (2.0g/kg TH)	15	11 (73.3)	11 (73.3)	11(73.3)	14(93.3)	-ive	-ive	10(66.7)	13(86.7)	12 (60)	9 (60)
5 (1.0g/kg MH)	11	11 (100)	9 (81.8)	10(90.9)	10(90.9)	-ive	-ive	5 (45.5)	9 (81.8)	5 (45.5)	6 (54.5)

- TH and MH showed a potentiating effect on the expression of pro-apoptotic proteins Apaf-1= Caspase 9, p53 and IFNGR1.
- TH and MH showed a lowering effect on the expression of anti-apoptotic proteins Bcl-xL, TNF-a, COX-2 and ESR1compared to non-treated positive control.

Immunohistochemical Expression (%) of Pro and Anti-apoptotic Proteins at Cancer Tissues level (Honey treatment started AFTER cancer is palpable

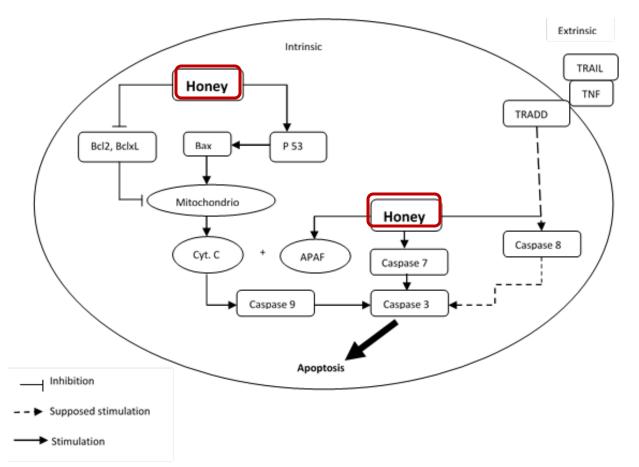

Tumours

No. of positive tumours (% expression or positivity)


Group	Total	Caspase9	Apaf-1	P53	IFNGR1	FASLG	FADD	Bcl-xL	TNF-a	COX-2	ESR1
1 +ive control 2	40	12 (30)	15 (37.5)	17 (42.5)	20 (50)	15 (37.5)	13 (32.5)	31 (77.5)	30 (75)	26 (65)	32 (80)
2 (0.2g/kg TH)	25	17 (68)	18 (72)	13 (52)	18 (72)	-ive	-ive	12 (48)	17 (68)	12 (48)	16 (64)
3 (1.0g/kg TH)	23	16(70)	15(65)	14(61)	17(74)	-ive	-ive	11(48)	17(74)	11(49)	14(61)
4 (2.0g/kg TH)	30	21 (70)	17(57)	22(73)	22(73)	-ive	-ive	13(43)	21 (70)	13(43)	17(57)
5 (1.0g/kgMH)	30	21 (70)	19(63)	20(67)	25(83)	-ive	-ive	13(43)	22(73)	13(43)	17(57)
(1.0g/kgHSA)	25	18 (72)	15 (60)	17 (68)	19 (76)	-ive	-ive	13 (52)	18 (72)	13 (52)	17 (68)
	(H and	HSA sh	owed a n	otentiati	ng effect	on the ex	nression	of pro-a	nontotic	nroteins:	Anaf-1=

• TH, MH and HSA showed a potentiating effect on the expression of pro-apoptotic proteins; Apaf-1= Caspase 9, p53 and IFNGR1.

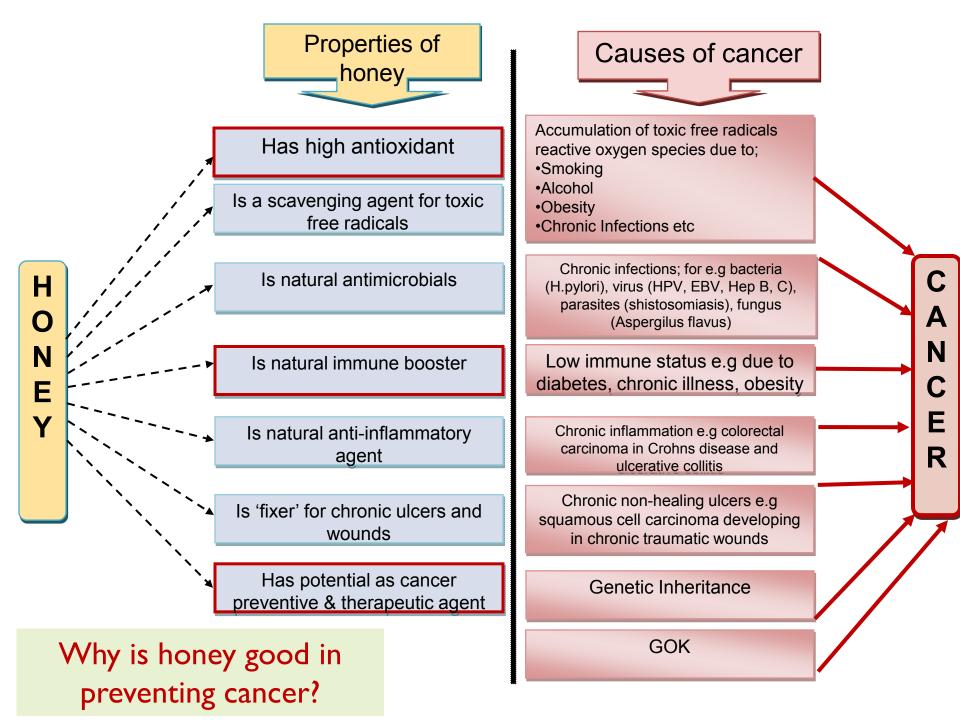
• A lowering effect on the expression of anti-apoptotic proteins; Bcl-xL, TNF-a, COX-2 and ESR1compared to non-treated positive control.



Summary of results (honey treatment started **BEFORE** cancer induction).

Summary of results (treatment started **AFTER** cancer is palpable).

Mechanism of anti-apoptotic pathway of Honey



Legends: Bcl-2 — B cell lymphoma 2; BclxL=B cell lymphoma extra large; Cyt. C — cytochrome C; APAF-1 — apoptotic protease activating factor 1; TNF — tumor necrosis factor; TRAIL — TNF related apoptosis-inducing ligand; TRADD — TNFR associated death domain protein.

Ref: Oxid Med Cell Longev. 2018 Jan 18;2018:8367846. doi: 10.1155/2018/8367846. eCollection 2018

CONCLUSION OF HONEY STUDY

- 1. Honey when given 7 days BEFORE tumour induction and given AFTER breast cancer development
 - 1. Decreases tumour size, weight, multiplicity and potentiates latency
 - 2. Has better histological grading
 - 3. Improves hematological profile
 - 4. Increases the expression of pro-apoptotic proteins (Caspase-9,Apaf-1, p53, IFN-γ and IFNGR1) at serum and cancer tissue level
 - 5. Decreases expression of anti apoptotic proteins (Bcl-xL, TNF-α, COX-2, E2 and ESR1) at serum and cancer tissue level
- 2. The mechanism by which TH and MH exert cancer-preventive and cancertherapeutic effects is multifold; through
 - a) Modulation of immune response by ameliorating haematological and serological parameters, and
 - b) By activation/modulation of pro and anti-apoptotic proteins of intrinsic pathway at serum and tumour tissues levels
- 3. Honey could be used as possible natural 'preventive' agent against breast cancer,
- 4. Honey could be used as adjuvant to chemotherapy

Publications on Honey study

•Honey and Cancer: Sustainable Inverse Relationship Particularly for Developing Nations—A Review.. Evid Based Complement Alternat Med. 2012;2012:410406. Epub 2012 Jun 17

•Does Honey Have the Characteristics of Natural Cancer Vaccine?. Journal of Traditional and Complementary Medicine 2 (2012) 276-283.

•Review on the Medicinal Effects of Tualang Honey and Its Comparison With Well Established Manuka Honey. Malays J Med Sci. May-Jul 2013; 20(3): 6-13.

•Inhibitory Effect of Tualang Honey on Experimental Breast Cancer in Rats: A Preliminary. Asia Pacific Journal of Cancer Prevention; 2013,14(4),2249-2254 DOI:http://dx.doi.org/10.7314/APJCP.2013 14.4.2249

• Honey as a Potential Natural Anticancer Agent: A Review of Its Mechanisms, Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 829070, 7 pages, 2013. doi:10.1155/2013/829070.

•Inhibitory effects of Malaysian tualang honey and Australian/New Zealand Manuka honey in modulating experimental breast cancers induced by n-methyl-n-nitrosourea (mnu): A comparative study. Pathology. 2016 Feb;48 Suppl 1:S148. doi: 10.1016/j.pathol.2015.12.403.

•The Anti-Cancer Effects of Tualang Honey in Modulating Breast Carcinogenesis: An Experimental Animal Study. BMC Complimentary and Alternative Medicine; 2017 Apr 11;17(1):208. doi: 10.1186/s12906-017-1721-4.

•Oral Administration of Tualang and Manuka Honeys Modulates Breast Cancer Progression in Sprague-Dawley Rats Model. Evid Based Complement Alternat Med. 2017;2017:5904361. doi: 10.1155/2017/5904361. Epub 2017 Apr 5


•Honey As a Potential Natural Antioxidant Medicine: An Insight Into Its Molecular Mechanisms of Action.. Oxid Med Cell Longev. 2018 Jan 18;2018:8367846. doi: 10.1155/2018/8367846. eCollection 2018.

•Effect of Daily Supplementation of Malaysian Jungle Tualang Honey and Australian/New Zealand Manuka honey on Hematological and Some Biochemical Variables in Female Rats.. Annals of Life Sciences 2 (5) (2018) (10-22).

•Effect of Apis Dorsata Honey and Honey Sugars Analogue on Hematological and Some Biochemical Parameters in Albino Rats Model. Asia Pacific Journal of Science and Technology: Volume: 23. Issue: Volume: 23. Issue: 02. Article ID.: APST -23-02-07..

Vaccine 5: Curcumin

Summary

- Cancer is on the rise
- There are natural cancer vaccines
 - Reduce your risk factors
 - Watch what you eat sugar is sweet poison
 - Take honey and curcumin daily
 - Exercise 30min everyday
- Prevention is better than cure.... avoid smoking, obesity, stress, alcohol, be physically active → InsyaAllah could lead to long healthy life!